CHAPTER 1

WHAT IS CHEMISTRY?

 THE STUDY OF ALL SUBSTANCES AND THE CHANGES THEY CAN UNDERGO.

SCIENTIFIC METHOD-

- OBSERVATION
- STATING A QUESTION
- HYPOTHESIS POSSIBLE ANSWER
- EXPERIMENT
- CONCLUSION WHAT YOU FOUND IN YOUR EXPERIMENT

SCIENTIFIC METHOD LEADS TO

• NATURAL LAW — TELLS YOU HOW NATURE BEHAVES BUT NOT WHY IT BEHAVES.

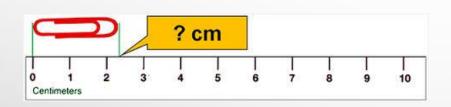
FINALLY YOU FORM A

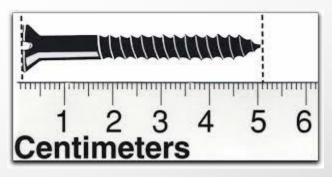
- THEORY EXPLAINS WHY NATURE BEHAVES IN THE WAY DESCRIBED BY NATURAL LAW.
- USED FOR PREDICTION OF RESULTS FOR FURTHER EXPERIMENTS.

DURING THE EXPERIMENT...

- EXPERIMENTAL CONTROL FACTOR
 THAT REMAINS CONSTANT DURING
 THE EXPERIMENT. IT IS COMPARED
 WITH THE VARIABLE.
- <u>VARIABLE</u> FACTOR THAT IS BEING TESTED DURING THE EXPERIMENT.

- *MEASUREMENT...
 - WHEN WE PERFORM


 EXPERIMENTS, WE NEED TO USE


 SOME FORM OF MEASUREMENT.
 - MEASUREMENTS CONTAIN
 NUMBERS AND UNITS

RELIABILITY OF NUMBER PART OF MEASUREMENTS

- PRECISION VS ACCURACY
 - PRECISION MEASUREMENT THAT
 GIVES THE SAME RESULT AGAIN AND
 AGAIN UNDER THE SAME CONDITIONS
 - <u>ACCURACY</u> MEASUREMENT THAT IS CLOSE TO THE ACCEPTED VALUE.

ALL MEASUREMENTS INVOLVE SOME ESTIMATION

WHICH RULER REQUIRES THE MOST ESTIMATING?

SIGNIFICANT DIGITS

DEFINED AS CERTAIN DIGITS AND THE ONE ESTIMATED
 DIGIT OF A MEASUREMENT

RULES FOR DETERMINING HOW MANY SIG DIGS A MEASUREMENT HAS

- ALL NON-ZEROS ARE SIGNIFICANT
- ZEROS AS PLACEHOLDERS ARE NOT SIGNIFICANT!
- ZEROS NOT PLACEHOLDERS ARE SIGNIFICANT!
- ZEROS IN THE MIDDLE OF NON-ZEROS ARE SIGNIFICANT!

ATLANTIC – PACIFIC RULE ~ AN EASIER WAY TO DEAL WITH ZEROS


- COUNTING RULES...
 - FIRST DIGIT YOU COUNT MUST BE A NON-ZERO

- ONCE YOU START TO COUNT DO NOT STOP UNTIL
 YOU ARE OUT OF DIGITS TO COUNT
- USE THE ATLANTIC-PACIFIC RULE TO DECIDE WHETHER TO COUNT LEFT TO RIGHT OR RIGHT TO LEFT

THE ATLANTIC-PACIFIC RULE

- IF THE DECIMAL IS <u>P</u>RESENT, COUNT FROM THE <u>P</u>ACIFIC SIDE (LEFT)
- IF THE DECIMAL IS <u>ABSENT</u>, COUNT FROM THE <u>ATLANTIC</u> SIDE (RIGHT)

HOW MANY SIGNIFICANT DIGITS ARE PRESENT?

- •1700 cm
- •0.00960 kg
- •64050 L
- •45.00 mg
- •0.0607 m

YOU TRY IT...HOW MANY SIG. DIGS. ARE PRESENT?

- •10100 mL
- •0.50090 dg
- •60.0 mL
- •1500. g
- •4. 010 X 10⁴ L

CALCULATION RULES FOR SIG DIGS

- MULTIPLICATION AND DIVISION
 - THE MEASUREMENT WITH THE SMALLEST NUMBER OF SIG. DIGS. DETERMINES HOW MANY DIGITS ARE ALLOWED IN THE ANSWER.
 - EX. 4.3 X 6.45 WILL HAVE 2 SIG. DIGS. IN THE ANSWER.
 - \bullet 27.735 = 28

ADDITION AND SUBTRACTION

- THE NUMBER OF SIGNIFICANT DIGITS IS DEPENDENT UPON OR ROUNDED OFF TO THE MEASUREMENT WITH THE LARGEST UNCERTAINTY. ***USE THE LEAST AMOUNT OF DECIMAL SPOTS***
- EX. 6.45 + 2.36 + 4.6 =
- 13.41 ROUNDED TO 13.4

SCIENTIFIC NOTATION WHY USE IT?

- DISTANCE FROM THE SUN = 93,000,000 MILES

RULES FOR SCIENTIFIC NOTATION

- EXPRESS THE SAME NUMBER OF SIGNIFICANT DIGITS
- •ALWAYS KEEP ONE DIGIT TO THE LEFT OF THE DECIMAL POINT

CHANGING FROM STANDARD TO SCIENTIFIC NOTATION

- MOVE THE DECIMAL SO THAT THERE IS ONLY ONE DIGIT ON THE LEFT OF THE DECIMAL
- COUNT THE NUMBER OF SPACES
 MOVED...THIS IS YOUR EXPONENT'S VALUE
 - IF YOU MOVED TO THE <u>LEFT</u> THIS A <u>POSITIVE</u> EXPONENT
 - IF YOU MOVED TO THE <u>RIGHT</u> THIS A <u>NEGATIVE</u>

 EXPONENT

CHANGING FROM SCIENTIFIC TO STANDARD NOTATION

 MOVE THE DECIMAL THE NUMBER OF SPACES EQUAL TO THE EXPONENT NUMBER

• IF THE EXPONENT IS POSITIVE MOVE TO THE RIGHT

• IF THE EXPONENT IS NEGATIVE MOVE TO THE LEFT

CHAPTER 2...ENERGY AND MATTER

MEASURING TEMPERATURE

- KELVIN BASED ON ABSOLUTE ZERO
- •THE POINT AT WHICH THE MOTION OF PARTICLES CEASES

•
$$K = 273 + C$$
• $C = K - 273$

MATTER

• MATTER — ANYTHING THAT HAS MASS AND VOLUME

SOLID - DEFINITE MASS AND VOLUME

<u>LIQUID</u> – DEFINITE VOLUME, NO

DEFINITE SHAPE

GAS - NO DEFINITE SHAPE OR VOLUME

PROPERTIES OF MATTER

- PHYSICAL PROPERTIES CAN BE OBSERVED WITHOUT CHANGING THE IDENTITY.
 - •EX. DENSITY, COLOR, MP, BP, CRYSTALLINE SHAPE AND CONDUCTIVITY

- CHEMICAL PROPERTIES HAVE TO CHANGE THE SUBSTANCE TO OBSERVE
 - EX. FLAMMABILITY, ABILITY TO RUST

CHANGES

- PHYSICAL CHANGE DOES NOT ALTER THE SUBSTANCE
 - EX. BREAKING GLASS, MELTING BUTTER
- CHEMICAL CHANGE CHANGES THAT ALTER THE SUBSTANCE.
 - BAKING A CAKE, IRON RUSTING

LAW OF CONSERVATION OF MATTER

• MATTER CANNOT BE CREATED NOR DESTROYED, IT JUST CHANGES FORM.

ELEMENTS, COMPOUNDS, MIXTURES

• ELEMENT – A SUBSTANCE THAT CANNOT BE SEPARATED INTO SIMPLER SUBSTANCES BY CHEMICAL MEANS.

-FOUND ON THE PERIODIC TABLE.

• COMPOUND – SUBSTANCE THAT CONTAINS 2
OR MORE ELEMENTS, CHEMICALLY COMBINED
IN FIXED PROPORTIONS.

ELEMENTS, COMPOUNDS, MIXTURES

- MIXTURE- BLEND OF 2 OR MORE PURE SUBSTANCES
- SUBSTANCES RETAIN THEIR OWN PROPERTIES
- SEPARATED BY PHYSICAL MEANS
- FILTRATION, DISTILLATION

MIXTURES

- HOMOGENEOUS SOLUTIONS NO VISIBLY DIFFERENT PARTS
 - EX. SALT WATER, AIR
- HETEROGENEOUS MIXTURE VISIBLY DIFFERENT PARTS
 - EX.CHOCOLATE CHIP COOKIES

END OF PART ONE...QUIZ COMING SOON TO A CHEM CLASS NEAR YOU

PART TWO...

- MEASURING UNITS
- DIMENSIONAL ANALYSIS TO CHANGE FROM ONE TYPE OF UNIT TO ANOTHER

SI BASE UNITS

- MASS = KILOGRAM (kg)
- LENGTH = METER (m)
- TIME = SECONDS (s)
- COUNT, QUANTITY = MOLE (MOL)
- TEMPERATURE = KELVIN (K)
- ELECTRIC CURRENT = AMPERE (A)
- LUMINOUS INTENSITY = CANDELA (Cd)

METRIC PREFIXES

LARGE

- MEGA (M)
- KILO (K)

 $1 \text{ K} \underline{\hspace{1cm}} = 1 \text{ X} 10^3 \underline{\hspace{1cm}}$

SMALL

- DECI
- CENTI
- MILLI
- MICRO
- NANO
- PICO

- $1 _{----} = 1 \times 10^{1} d_{---}$
- $1 _{----} = 1 X 10^{2} c_{----}$
- $1 _{---} = 1 \times 10^3 \text{ m}_{---}$
- $1 _{----} = 1 \times 10^6 \mu_{----}$
- 1 _____ = 1 X 10^9 n _____
- $1 _{----} = 1 \times 10^{12} p_{----}$

DERIVED UNITS

- MADE FROM COMBINING 2 OR MORE BASE UNITS.
 - EX. AREA = LENGTH X WIDTH = m^2
- VOLUME = LENGTH X WIDTH X HEIGHT = cm³
- DENSITY = MASS / VOLUME = g/cm³

RATIO UNITS

- COMMON METHOD OF EXPRESSING CALCULATION RESULTS AND/OR MEASUREMENT IN CHEMISTRY
- SIMILAR TO A FRACTION
- UNITS IN NUMERATOR AND DENOMINATOR

- EX.
 - SPEED = MPH OR mi/h
 - LUNCHMEAT = DOLLARS/Ib
 - DENSITY = g/cm^3 OR g/mL
 - POPULATION DENSITY = PEOPLE/km²
 - PRESSURE = PSI OR lb/in²

- ADDITIONS TO SI UNITS...
- VOLUME = LITER (L)
- PRESSURE = ATMOSPHERE (ATM) OR

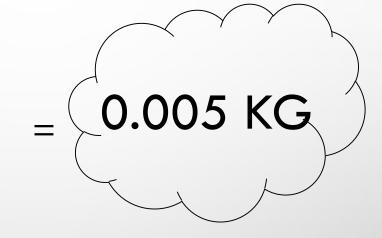
 MILLIMETER OF HG (MM HG)
- TEMPERATURE = CELSIUS DEGREE (C°)
- ENERGY = CALORIE (CAL)

DIMENSIONAL ANALYSIS/ FACTOR-LABEL METHOD

- TREAT UNITS AS FACTORS, WHICH CAN BE CANCELLED
- MUST KNOW YOUR EQUALITIES OR CONVERSION FACTORS
- CHOOSE THE EQUALITY THAT

 CANCELS OUT THE ORIGINAL UNIT

•STEPS:


- •1) BEGIN WITH KNOWN
- •2) DECIDE ON AN EQUALITY
- 3) ARRANGE UNITS TO CANCEL OUT ORIGINAL UNITS
- •4) DO THE MATH!

HOW MANY MINUTES ARE IN 4 HOURS?

• 4 HOURS X <u>60 MIN</u> = 240 MIN 1 HOUR

HOW MANY KILOGRAMS ARE IN 5 G?

• 5 G X <u>1 KG</u> 1000G

CHANGE 286 cg TO mg

(BOTH UNITS HAVE PREFIXES SO MUST DO TWO CONVERSIONS...ONE TO BASE UNIT THEN TO OTHER PREFIX UNIT!)

- •TO CHANGE FROM ENGLISH TO METRIC UNITS, USE CHART ON PAGE 38.
- •HOW MANY INCHES ARE IN 354